Resilience Toolbox

Resilience tools can be extremely useful for a wide range of practitioners but it can be hard to find the right tool for the job. The Resilience Shift has assessed a wide range of different tools to identify those that contribute to the resilience of critical infrastructure.

You can find an overview of these here, mapped by the resilience value they add at different stages of the infrastructure lifecycle.

The table shows all tools currently in the database (more to come). You can filter by sector, user type, resilience phase, origin, maturity level, and region, or scroll through the entire list. You can also search all fields and content for keywords e.g. flood, earthquake...

More information about our Tools and Approaches project can be found here.


Filter the tools

  • Resilience Phase:

  • Type:

  • Maturity:

  • Region:


View the tools

Showing all 19 tools | Show as table | Show as list SimpleDetailedComplex

Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse
CAESAR
CAT-I
CIrcleCIrcle
City Scan
CRICRI
EARTH EX
EDGe$
Elephant Builder
Envision
Equitable Origin
GRRASPGRRASP
RASTEP
RELi
Resilence Atlas
RVR
SAVi
SuRe
ThinkHazard!ThinkHazard!
TORC

CAESAR

Cascading Effect Simulation in Urban Areas to Access and Increase Resilience

The Tool CAESAR (Cascading Effect Simulation in urban Areas to assess and increase Resilience) addresses the need to better understand the cascading effects of major disasters in connected and interdependent urban infrastructure systems. CAESAR has the capacity to identify the most vulnerable components within individual infrastructure grids and it allows to assess potential damages within the grid as well as within coupled grids. In addition, the tool is capable to simulate mitigation strategies and their effectiveness beyond single grid boundaries. Required input parameters can be adjusted to the level of the available information enabling analyses on varying levels of detail. The tool can be applied to vital infrastructure grids such as energy, transport and telecommunication.

Content provided by developer.


Who is it for?
Phase:,
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: ,

Developed by

Fraunhhofer EMI

Open Tool
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

CAT-I

Capacity Assessment Tool for Infrastructure

UNPOS provides a tool, called CAT-I, for government users to assess the capacity of governments to plan, deliver, and manage infrastructure systems. CAT-I identifies gaps in capacity to delivery and manage infrastructure systems. The assessment will evaluate a country state, city or ministry’s ability to identify the need for new assets or upgrades to a current asset, manage risk within the built environment, properly design and construct infrastructure projects, safely manage and operate infrastructure systems, and to safely decommission assets at end of life.

The tool is web based but requires registration and user approval by administrator. The tool deployment is supported by UNOPS directly. Currently, the tool deployment is carefully controlled. UNPOS staff who assist users in using the tool are involved in providing recommendations on improving the tool.

To date, the tool has been used in Nepal and Serbia at the national level. There is potential to use CAT-I at the state or city level
UNPOS provides a tool, called CAT-I, for government users to assess the capacity of governments to plan, deliver, and manage infrastructure systems. CAT-I identifies gaps in capacity to delivery and manage infrastructure systems. The assessment will evaluate a country state, city or ministry’s ability to identify the need for new assets or upgrades to a current asset, manage risk within the built environment, properly design and construct infrastructure projects, safely manage and operate infrastructure systems, and to safely decommission assets at end of life.

The tool is web based but requires registration and user approval by administrator. The tool deployment is supported by UNOPS directly. Currently, the tool deployment is carefully controlled. UNPOS staff who assist users in using the tool are involved in providing recommendations on improving the tool.

To date, the tool has been used in Nepal and Serbia at the national level. There is potential to use CAT-I at the state or city level.

Content provided by developer.


Who is it for?
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: ,

Developed by

UNOPS

Open Tool
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

CIrcle

Ciritical Infrastrctures Relations and Consequences for Life and Environment

CIrcle is a tool to support the analysis of domino effects of critical infrastructure failure. It gives insight into how the effects of shocks and stresses on one type of infrastructure can lead to subequent effects on other types of critical infrastructure.
Users define the dependencies between Critical Infrastructures and CIrcle facilitates the discussion between interdependent stakeholders, building trust and stimulating future partnerships.

CIrcle’s approach:

  • Gather (open) data on critical and vulnerable infrastructure
  • Gather expert knowledge on direct impacts and dependencies
  • Combine data with expert knowledge to conduct cascading effect analyses
  • Complement risk assessments with gained insights on indirect effects
  • Increase cooperation between stakeholders

Users are governmental organizations and agencies, network operators, emergency response organizations as well as large industries who are interested in the dependencies between Critical Infrastructures.

Content provided by developer.


Who is it for? (NB. Policy makers, infrastructure owners and operators)
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region: ,
Value Chain Stage: , ,
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

City Scan

Rapid urbanization is transforming the planet and the way we live. For the first time in history, more people live in cities than in rural areas, and 90 percent of this urban expansion is taking place in developing countries. Urbanization, if managed well, can help reduce poverty and increase prosperity, as cities can accelerate growth, attract investment, spur innovation and enhance productivity. Poorly managed urbanization, however, can exacerbate existing challenges – including insecure livelihoods, inadequate provision of infrastructure and services, poor urban and systems planning, inadequate oversight of land use and building standards – and leave cities more vulnerable to natural hazards.

In this context, the World Bank Group’s (WBG) City Resilience Program (CRP) is an effort to engage city governments in a long-term partnership to identify areas of need and opportunity and to define a robust response towards building resilience. A broad coalition of experts and working groups accompanies each city-level engagement from program design to implementation to ensure an integrated, risk-informed and spatially driven approach.

The CRP has developed an assessment tool and framework that provides a rapid assessment of the critical development challenges that cities face using publicly available data. The City Scan aims to serve as a conversation starter between the World Bank task team and client city to assess cities’ investment priorities and financing needs in six broad areas, namely: (i) population trends, (ii) city competitiveness and economic growth, (iii) access to infrastructure and public services, (iv) urban transport and mobility, (v) climate mitigation, and (vi) municipal finance and institutions. Each of these areas is informed by various sources of global flood risk information to integrate the needs and challenges of both the built and natural environments.

In addition, other supplementary information (i.e., pedestrian and public transport accessibility, building footprints, and historic and near-real time flood monitoring, among others), in collaboration with different spatial data and remote sensing service providers, are considered in this assessment to tailor fit the City Scan to cities’ specific investment needs. The City Scan is currently being piloted in 14 cities in Sub-Saharan Africa, and is anticipated to be scaled up to other regions in the next phase of engagement.

Content provided by developer.


Who is it for? (NB. Decision makers and Planners)
Phase:
Sector:
Sector specific?Cities
Type:
Maturity:
Region:
Value Chain Stage:
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

CRI

City Resilience Index

The City Resilience Index is the first comprehensive tool for cities to understand and assess their resilience, enhancing their ability to build sound strategies and plans for a strong future. Through an online platform, it uses a comprehensive, holistic framework that is applicable at the city scale – one that combined the physical aspects of cities with intangible aspects associated with human behaviour which are often relevant in the context of economic, physical and social disruption. It is developed by Arup with support from The Rockefeller Foundation.

Content provided by developer.


Who is it for? (NB. Infrastructure owners, designers, community groups, environmental organisations, constructors, regulators, policy makers, etc…)
Phase:,
Sector:
Sector specific?Built Environment
Type:
Maturity:
Region:
Value Chain Stage: ,

Developed by

ARUP

Open Tool
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

EARTH EX

EARTH EX simulates global-scale disruption, with long duration power outages and cascading failures of all other infrastructures. It offers executive and senior level operational decision makers the opportunity to review critical decision-making policies, processes, roles and responsibilities – essential to the success of all other response and recovery operations.

The exercise is designed for self-evaluation, with distributed play conducted using electronic tools, and local facilitation for feedback and execution.

Content provided by developer.


Who is it for? (NB. Government, Civil society, Residents, and the private sector)
Phase:,
Sector:
Sector specific?Built Enviroment
Type:
Maturity:
Region: ,
Value Chain Stage: ,
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

EDGe$

Economic Decision Guide Software

NIST had created EDGe$, based on the process found in the Community Resilience Economic Decision Guide for Buildings and Infrastructure Systems (EDG) and designed for use in conjunction with the NIST Community Resilience Planning Guide for Buildings and Infrastructure Systems (CRPG). EDGe$ is intended for community planners, resilience and budget officers, and the public.

The tool provides a transparent and flexible economic methodology based on best-practices for evaluating investment decisions aimed at improving the ability of communities to adapt to, withstand, and quickly recover from natural, technological, and human-caused disruptive events. The tool helps to identify and compare the relevant present and future resilience costs and benefits associated with new capital investment alternatives versus maintaining a community’s status-quo.

The case studies cited in the user manual are derived from the United States and the tool was developed with the United States context in mind.

Content provided by developer.


Who is it for? (NB. Public Community Planners and Resilience officers. Local government)
Phase:,
Sector:
Sector specific?Community level Resilience Planning, but skewed to buildings and Infrastructure Systems
Type:
Maturity:
Region:
Value Chain Stage: ,
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

Elephant Builder

The Elephant Builder is Bellwether Collaboratory’s collaborative modeling tool for multi-stakeholder planning processes. Governments and nonprofits use the Elephant Builder to engage experts and community members in an authentically inclusive manner, as stakeholders build and analyze causal models of the community systems of interest.

The modeling process requires little training and can accommodate stakeholders across a broad range of technical sophistication and confidence: models are built node by node, the Elephant Builder asking simple cause-and-effect questions. Once the model is completed, the Elephant Builder guides stakeholders through the identification of causal pathways, system vulnerabilities, feedback loops, and recommended actions. Users can also parameterize the model with quantitative variable-states and probabilistic causal relationships, allowing the Elephant Builder to act as an AI-backed scenario-testing tool.

The Elephant Builder has been used to examine critical lifeline interdependencies in Los Angeles (Susanne Moser Research and Consulting and U.S. Geological Survey), food systems in New York state (SUNY Albany School of Public Health), and community resilience in Larimer County, Colorado (Larimer County Office of Emergency Management).

Content provided by developer.


Who is it for? (NB. Decision makers and Planners)
Phase:
Sector:
Sector specific?Cross-sector
Type:
Maturity:
Region:
Value Chain Stage: ,
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

Envision

Envision is a groundbreaking resource for professionals involved in planning, designing, building, maintaining civil infrastructure. As a rating system for sustainable infrastructure, Envision is supported by a wide array of respected organisations involved in infrastructure design, construction, and operation.

Envision provides guidance on sustainable best practices at no cost to users, and serves not only as a planning and design tool, but also as means of evaluating infrastructure project once complete.

Content provided by developer.


Who is it for? (NB. Infrastructure owners, designers, community groups, environmental organisations, constructors, regulators, policy makers)
Phase:
Sector:
Sector specific?Built Environment
Type:
Maturity:
Region:
Value Chain Stage: , , , , , , ,
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

Equitable Origin

Equitable Origin Platform

Tool 1: EO100™ Standard for Responsible Energy Development

The EO100™ Standard for Responsible Energy Development provides a framework for implementing and verifying enhanced environmental, social and governance (ESG) performance, greater transparency, more accountability, and better outcomes for local stakeholders in energy development projects. The EO100™ Standard represents leading industry practices and references international standards for evaluating site-level ESG performance of energy and energy infrastructure projects.

The EO100™ Standard encompasses the following Principles:

  • Corporate Governance, Transparency & Ethics
  • Human Rights, Social Impact & Community Development
  • Indigenous People’s Rights
  • Fair Labor & Working Conditions
  • Climate Change, Biodiversity & Environment

Tool 2: Equitable Origin Platform

The Equitable Origin (EO) Platform is a one-stop resource that provides energy companies, utilities, investors, and corporate power purchasers with essential tools to effectively implement and track due diligence and compliance within their operations, supply chains, and investment portfolios. The EO100™ Performance Assessment provides a quick, easy, and efficient way to measure the performance of energy and energy infrastructure projects and suppliers of energy against a comprehensive and customizable range of environmental, social and governance (ESG) indicators.

Content provided by developer.


Who is it for? (NB. Local stakeholders)
Phase:,
Sector:
Sector specific?Built Enviroment
Type:
Maturity:
Region:
Value Chain Stage:
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

GRRASP

Geospatial Risk and Resilience Assessment Platform

Geospatial Risk and Resilience Assessment Platform (GRRASP) is a World Wide Web oriented architecture bringing together geospatial technologies and computational tools for the analysis and simulation of critical infrastructures. It allows information sharing and constitutes a basis for future developments in the direction of collaborative analysis and federated simulation. It takes on board security concerns in the information sharing process, thanks to its ability to manage users and roles consistently. Based entirely on open source technologies, the system can also be deployed in separate servers and used by EU Member States as a means to facilitate the analysis of risk and resilience in critical infrastructures.

GRRASP can be used for the analysis of complex networked systems taking into consideration cross-sectoral and cross-border interdependencies. It can be used for analyses of CI disruptions at local, regional, national, international level. GRRASP follows a tiered approach according to which Tier 1 modules can be used for the analysis of critical infrastructures at sectoral level, Tier 2 modules for cross-sectoral analyses (interdependencies), and finally Tier 3 modules for high level economic impact of CI disruption at state level.

Content provided by developer.


Who is it for? (NB. Infrastructure operators)
Phase:
Sector:
Sector specific?Critical Infrastructure Systems
Type:
Maturity:
Region:
Value Chain Stage: , ,
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

RASTEP

RApid Source TErm Prediction

RApid Source TErm Prediction (RASTEP) is a tool for decision support to emergency response organisations in the event of an accident with potential radioactive releases. It works in the following way: The user answers questions on the ongoing event, and the underlying model uses the given answers together with advanced data modelling to predict the most likely outcome in a database of pre-calculated consequences. We think this tool has potential to be generalized to other situations with uncertain outcome in complex systems, e.g. climate change, volcanic eruptions, epidemics, market development etc.

Content provided by developer.


Who is it for? (NB. Decision makers and Planners)
Phase:
Sector:
Sector specific?Nulcear sector
Type:
Maturity:
Region:
Value Chain Stage:
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

RELi

The Resilience Action List (RELi) standard

The RELi 2.0 Rating System (RELi 2.0) is a holistic, resilience-based rating system that combines innovative design criteria with the latest in integrative design processes for next-generation neighborhoods, buildings, homes and infrastructure. By selectively bundling existing sustainable and regenerative guidelines with RELi’s ground-breaking credits for emergency preparedness, adaptation, and community vitality, RELi 2.0 is the most comprehensive reference guide and certification available anywhere for socially and environmentally resilient design and construction.

Since 2017, RELi has been managed by the U.S. Green Building Council, Inc. (USGBC) which, in conjunction with Market Transformation to Sustainability, is leading the evolution of RELi 2.0 to synthesize the LEED Resilient Design pilot credits with RELi’s Hazard Mitigation and Adaptation credits. RELi 2.0 certification is based on a point system. The number of points that a project earns determines the certification level it receives.

Content provided by developer.


Who is it for? (NB. Infrastructure owners, designers, community groups, environmental organisations, constructors, regulators, policy makers, etc.)
Phase:
Sector:
Sector specific?Built environment
Type:
Maturity:
Region:
Value Chain Stage:

Developed by

Various

Open Tool
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

Resilence Atlas

The Resilience Atlas was developed with funding from the Rockefeller Foundation to identify where projects should take place and allow users to derive insights of their own based on data. The developers believed that policymakers and donors needed to know where problems were occurring to know where to make investments.

The Resilience Atlas is an interactive analytical tool for building:

  1. Understanding of the extent and severity of some of the key stressors and shocks that are affecting rural livelihoods, production systems, and ecosystems in the Sahel, Horn of Africa and South and Southeast Asia;
  2. Insights into the ways that different types of wealth and assets (i.e. natural capital, human capital, social capital, financial capital and manufactured capital) and combinations among these – impact resilience in particular contexts.

The tool is a web-based open source mapping platform.

To date, the tool has been used at the national level, but there are opportunities to use the data at a more localized level. Data is available for all countries. This tool is primarily used in places where capacity for remote sensing and GIS is lower. “

Content provided by developer.


Who is it for? (NB. Assets owner / managers / operators)
Phase:,
Sector:
Sector specific?Buildings
Type:
Maturity:
Region:
Value Chain Stage: , , , , , , ,
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

RVR

Resilience Value Realization

The Resilience Value Realization (RVR) methodology was developed by ValueLabs through funding from The Rockefeller Foundation to be used by city governments with project owners identified.

RVR is a customized approach to project planning, pre-development, and development that was designed to identify, catalyze and protect the delivery of resilience value to public and private stakeholders in a project. The RVR approach comprises working with project teams and resilience champions to be very specific about how the opportunity can create resilience and to address, as an integral part of project development, any challenges impacting the delivery of resilience value. The workshop is structured to start with understanding where things are today, then asks participants to develop an opportunity statement around where they want to be in the future, which leads to development of a roadmap for realizing that opportunity.

The tool is flexible and has also been used to identify and empower a project owner.
This tool is delivered as a workshop, but requires pre-work including interviews, data gathering, and data representation (drawings, maps, figures, etc.). This tool can be used in all geographic regions.

Content provided by developer.


Who is it for? (NB. Infrastructure owners, designers, community groups, environmental organisations, constructors, regulators, policy makers, etc…)
Phase:
Sector:
Sector specific?Cities
Type:
Maturity:
Region:
Value Chain Stage: , ,

Developed by

Marcela Ruibal

Open ToolView Case Study
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

SAVi

Sustainable Asset Valuation

Policy makers, infrastructure planners and investors all ask about the value-added of sustainable infrastructure.

  • Are such assets more expensive to plan and build and finance?
  • Do they bring better value for money?
  • What are the risks associated with greener designs and cleaner technologies?

We are also waking up to reality of climate change and range of other environmental, social and economic risks. Insurance firm Swiss Re, estimates that in 2017, the economic losses from natural disasters was US$ 306 billion. This is almost the double of the losses in 2016, which was US$ 188 billion and also much higher than the 10-year-average of $190 billion.

Such risks and externalities are typically ignored in infrastructure finance analyses. The MAVA Foundation and IISD built SAVi to address such inconsistencies. We built SAVi to make the investment case for sustainable infrastructure.

Using SAVi

SAVi incorporates 3 fundamental features:

Valuation: SAVi values in financial terms, the material risks and co-benefits of infrastructure projects. We work with governments and investors to identify the risks material to their projects and design appropriate simulation scenarios.

Simulation: SAVi is unique in that it combines the results of systems thinking and system dynamics simulation with project finance modelling. We work with governments and investors to identify the material risks of each infrastructure project. We also identify co-benefits that contribute towards realising the UN sustainable development goals. We then determine the simulation scenarios.

Bespoke: The application of SAVi is bespoke. We customise SAVi to each individual infrastructure project. Such an approach is required as each project is characteristic of distinctive opportunities and risks.

SAVi can hence answered questions such as:

  • Do sustainable infrastructure assets bring better financial returns than business-as-usual counterparts?
  • What additional capital is required to make this asset more resilient to changing climates?
  • In a given pipeline or portfolio, which asset make the higher contributions toward the UN Sustainable Development Goals?

The SAVi website is under construction.

Content provided by developer.


Who is it for? (NB. Decision makers (e.g. financiers, public authorities))
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: ,
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

SuRe

The Standard for Sustainable and Resilience Infrastructure (SuRe®)

SuRe® – the Standard for Sustainable and Resilient Infrastructure is a third-party-verified, global voluntary standard, which drives the integration of sustainability and resilience aspects into infrastructure development and upgrade by providing guidance for infrastructure project developers, financiers and public-sector institutions. The Standard assesses infrastructure throughout the project life cycle at the design, construction and operational phases. SuRe® consists of 14 themes covering 61 criteria across environmental, social and governance (ESG) factors in addition to two general reporting requirements for impact measurement.

SuRe® can be applied to all types of infrastructure, including critical infrastructure systems and infrastructure services, such as: Water (harvesting, storage, management, distribution, treatment and recycling); Energy (generation, storage and distribution); Solid waste (collection, distribution, processing, recycling and storage); Transport networks, nodes and fleet (pedestrian, bicycle, vehicular, rail, water-borne and air transportation); Communication networks (telephone, cellular and data); Social infrastructure (education, healthcare, sports and recreation, law enforcement, fire and emergency services); Food systems (production, storage, processing and distribution).

SuRe® development followed the ISEAL Alliance Codes of Good Practice for standard setting, and as of October 2018, SuRe® is the first infrastructure standard to be an Associate Member of ISEAL, the global membership association for credible and good practice in sustainability standards. Other members of ISEAL include FSC, Fair Trade, Better Cotton Initiative BCI, SA 8000 and others. The first certifiable version of the SuRe® Standard was released at COP23 2017. Since then, SuRe® has entered into the SuRe® Initial Implementation Phase 2018-2019 whereby projects will be assessed on all SuRe® material criteria and, if compliant, be awarded a SuRe® certification.

GIB has also developed the self-assessment tool based on the SuRe®, called The SmartScan. The SmartScan is an infrastructure self-assessment tool developed on the basis of the SuRe® Standard for Sustainable and Resilient Infrastructure, that provides a rapid assessment of an infrastructure project against sustainability and resilience criteria covering Environmental, Social and Governance (ESG) issues.

SmartScan offers cities and project owners a practical and rapid way to:

  • enhance their awareness about sustainability and resilience-related good practices;
  • prepare projects for the scrutiny of financial services;
  • increase the project attractiveness for potential investment.

The SmartScan has been applied to more than 25 infrastructure projects in the sectors of Water, Energy, Transport networks, Communication technologies installations, in countries such as China, Mexico, India, Philippines, Kosovo and Ecuador, with a total CAPEX of 18 Billions USD

Content provided by developer.


Who is it for? (NB. Project developers, financiers, local authorities)
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: ,
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

ThinkHazard!

GFDRR, a unit within the World Bank, has developed a web-based tool ThinkHazard! to enable non-specialists (decision makers, planners and government staff) to consider the impacts of disaster on new developments of project.
Users can quickly assess the level of river flood, earthquake, drought, cyclone, coastal flood, tsunami, volcano, and landslide hazard within their project area to assist with project planning and design. Users are only required to enter their project location – national, provincial or district name. The results interface shows a user whether they require high, medium or low awareness of each hazard when planning their project.

The interface provides links to additional resources such as country risk assessments, best practice guidance, and additional websites. ThinkHazard! also highlights how each hazard may change in the future as a result of climate change.
The tool is a web-based open source mapping platform allowing other developers to improve or alter the platform.
This tool is available in English, French, and Spanish. Data is available for all countries, but the information is most relevant for less developed countries as GIS datasets are more advanced in more developed countries.

Content provided by developer.


Who is it for? (NB. Development professionals, planners, anyone. It should not replace more robust data though)
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: , ,

Developed by

GFDRR

Open Tool
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

TORC

Training for Operational Resilience Capabilities

The Training for Operational Resilience Capabilities (TORC) approach addresses three distinct training arenas; operational training addresses the exploration of the necessary margin of maneuver in the “compliance vs resilience” space, managerial training addresses the assessment of a reasonable and accountable space of maneuver, while integrated training addresses the active reconciliation of margin and space of maneuver. This facilitates a continual process of updating of rules based on the enhanced knowledge about the professional competence and craftsmanship in the organization at hand.

The TORC approach is designed to be applicable in different contexts; in a normal operation context where pre-existing rules and procedures form the expectations of compliance, in an emergency context in which emergency plans form the presumptions of compliance, and in a “managing the unexpected” context in which the applicable set of rules and procedures must be collected and formed instantly and situation-dependently.

Content provided by developer.


Who is it for?
Phase:,
Sector:
Sector specific?Built Environment
Type:
Maturity:
Region:
Value Chain Stage: ,

Developed by

SINTEF

Open Tool
Diagnose & Conceive Design & Deliver Operate & Maintain
Diagnose Options Procure Design/Plan Finance Implement Operate Maintain Dispose/Reuse

Click here to submit your own links.

Submit a suggestion for our Tools section

Your email address will be treated in accordance with our data protection policy.





Close form