Resilience Toolbox

Resilience tools can be useful for a wide range of practitioners but it can be hard to find the right tool for the job. The Resilience Shift has assessed a wide range of tools, which are listed below, mapped by the resilience value they add at different stages of the infrastructure lifecycle. More information about the project can be found here.

Use the filters to break down the results by sector and user type. Click the + button for additional filters.

  • hidden

    Reset
  • Resilience Phase:

  • Type:

  • Maturity:

  • Region:

19 tools found | Visualise these results in the value chain Show full details for each tool as a list

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse
CDIA Project Screening
CityStrength Diagnostic
Climate Lens
CRAM
CRPT
CWRA
FAUC®
OurWaterOurWater
PCVA
QREQRE
REDi
RELi
RESILENS
Resilience.io
SimCenterSimCenter
Simulating Critical InfrastructuresSimulating Critical Infrastructures
SuRe
TORC
World Bank Climate & Disaster Risk Screening ToolsWorld Bank Climate & Disaster Risk Screening Tools

CDIA Project Screening

CDIA Project Screening Tool

This tool aims to help cities identify and profile investments, particularly those prioritized in climate resilience strategies, to enhance opportunities for downstream finance.

CDIA focuses on developing investments in urban infrastructure and service between city-level urban strategies and implementing specific infrastructure projects with domestic, international, public, or private financing.

Content provided by developer.


Who is it for? (NB. Financiers and project developers of medium-sized cities in Asia and the Pacific)
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

CityStrength Diagnostic

CityStrength is a rapid diagnostic that aims to help cities enhance their resilience to a variety of shocks and stresses. A qualitative assessment developed with support from the Global Facility for Disaster Reduction and Recovery (GFDRR), the diagnostic takes a holistic and integrated approach and encourages collaboration between sectors to more efficiently tackle issues and unlock opportunities within the city. CityStrength is flexible and can adapt to different needs of clients in terms of depth and breadth, and can be implemented in any city or combination of cities within a country regardless of size, institutional capacity, or phase of development.

Content provided by developer.


Who is it for? (NB. Government, civil society, residents, and the private sector)
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Climate Lens

The Climate Lens is a horizontal requirement applicable to Infrastructure Canada’s Investing in Canada Infrastructure Program (ICIP), Disaster Mitigation and Adaptation Fund (DMAF) and Smart Cities Challenge. It has two components the GHG mitigation assessment, which will measure the anticipated GHG emissions impact of an infrastructure project, and the climate change resilience assessment, which will employ a risk management approach to anticipate, prevent, withstand, respond to, and recover from a climate change related disruption or impact.

As part of the Investing in Canada plan, applicants seeking federal funding for new major public infrastructure projects will now be asked to undertake an assessment of how their projects will contribute to or reduce carbon pollution, and to consider climate change risks in the location, design, and planned operation of projects.

The Climate Lens will help infrastructure owners design better projects by assessing their opportunities to reduce carbon pollution and identify when they should be adapting project design to better withstand impacts of climate change (e.g. severe weather, floods, sea-level rise, etc.). A General Guidance document has been prepared to explain the required approach, define the scope of the assessment, and identify the specific information that must be submitted to Infrastructure Canada.

Content provided by developer.


Who is it for? (NB. Canada's Infrastructure owners/ project planners (Infrastructure seeking federal fundings))
Phase:,
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage:
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

CRAM

Community Resilience Assessment Methodology

A concept paper for a community resilience assessment methodology (CRAM). The goal is to assess community resilience by measuring the preparedness of different resource areas and infrastructure systems on which communities depend (e.g. communication and transportation). Built on research and stakeholder dialogues conducted to support the development of a disaster resilience framework, CRAM places a strong emphasis on the interconnection between infrastructure and social systems and complements NIST’s ongoing effort to support community resilience planning.

This is an ongoing development with plans up until FY 2019.

Content provided by developer.


Who is it for? (NB. All key stakeholders within a community)
Phase:,
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

CRPT

City Resilience Profiling Tool

The City Resilience Profiling Tool (CRPT) is a self-assessment tool primarily addressed to municipal leaders, managers, urban planners, and other personnel with a responsibility for ensuring the safety, maintenance, and security of all aspects and functions of an urban area, including critical infrastructure and services, health facilities, transport and telecommunications networks, sanitation, water, etc.

The City Resilience Profiling Programme (CRPP) designs this tool for generating metrics for urban resilience in order to establish baselines (or ‘profiles’) upon which to integrate resilience based inputs to sustainable urban planning, development, and management processes in cities and other human settlements throughout the world. The main goal of the CRPP is to support local governments and their stakeholders by transforming urban areas into safer and better places to live in, and improve their capacity to absorb and rebound quickly from any and all potential shocks or stresses.

Content provided by developer.


Who is it for? (NB. Local government)
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: , , , , , , , ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

CWRA

City Water Resilience Approach

The City Water Resilience Approach (CWRA) responds to a demand for innovative approaches and tools that help cities build water resilience at the urban scale. The CWRA was developed to help cities grow their capacity to provide high quality water resources for all residents, to protect them from water-related hazards, and to connect them through water-based transportation networks (“provide, protect, connect”).

The approach is the result of fieldwork and desk research, collaborative partnerships with subject matter experts, and direct engagement with city partners. Based on this research, the CWRA outlines a process for developing urban water resilience, and provides a suite of tools to help cities grow their capacity to survive and thrive in the face of water-related shocks and stresses. The approach details five steps to guide cities through initial stakeholder engagement and baseline assessment, through action planning, implementation and monitoring of new initiatives that build water resilience.

Content provided by developer.


Who is it for? (NB. Primarily government, owners and operators, but all stakeholders potentially)
Phase:, , ,
Sector:
Sector specific?Water
Type:
Maturity:
Region:
Value Chain Stage: , , , , , , , ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

FAUC®

The Framework for Acting under Uncertainty and Complexity

The FAUC framework focuses on Five Capacities of an Organization:

  • Entrepreneurial
  • Alert
  • Adaptive
  • Resilient
  • Creative

It helps to find weak spots and enables organizations to act effectively in complex and uncertain environments.

The FAUC® is delivered through two products: FAUC® PLAY and FAUC® Assessment. The approach of the FAUC©PLAY is interactive. The FAUC©PLAY uses structured dialogue, playing and the wisdom of people involved. The FAUC© assessment uses both quantitative and qualitative information and the wisdom of people involved.

Content provided by developer.


Who is it for? (NB. Everyone)
Phase:, ,
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage:
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

OurWater

OurWater

OurWater helps users visualize the processes, stakeholders and infrastructure networks that make up their city’s water system.

OurWater has been developed to address the growing need for tools that can help cities share information between different stakeholders and visualize complex interactions. This goal of understanding the city’s water landscape is one critical element of moving towards the goal of building cities’ capacity to endure, adapt and transform in the face of water challenges.

Content provided by developer.


Who is it for?
Phase:, ,
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: , , , , , ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

PCVA

Participatory Capacity and Vulnerability Analysis

Oxfam’s participatory capacity and vulnerability analysis (PCVA) tool is a risk analysis process designed to help staff and partner organisations engage with communities in contexts where natural disasters are significant drivers of poverty and suffering. PCVA has its roots in two proven social development methodologies. First, it stems from capacity and vulnerability analysis (CVA) methodology. This has long enabled development and humanitarian aid workers to design programmes based on a community’s capacities as well as its vulnerabilities. It recognises that vulnerable people have capacities to cope with adversity and can take steps to improve their lives, however difficult their situation may be. Second, it is rooted in the belief that enabling communities to genuinely participate in programme design, planning, and management leads to increased ownership, accountability and impact, and is the best way to bring about change. PCVA draws on a wide range of participatory learning and action (PLA) techniques and tools that are designed to channel participants’ ideas and efforts into a structured process of analysis, learning, and action planning, with the overall aim of reducing a community’s disaster risk.

Content provided by developer.


Who is it for? (NB. Project services)
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: , , , , , , , ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

QRE

Quick Risk Estimation tool

The Quick Risk Estimation tool is designed for the purposes of identifying and understanding current and future risk/ stress/ shocks and exposure threats to both human and physical assets. The QRE tool is not a full scale risk assessment, rather a multi-stakeholder engagement process to establish a common understanding. Taking into account the actions or corrective measures already undertaken, the QRE will produce a dashboard-style risk assessment advising the risks and hazard to human and physical assets, impacts of identified main risk and associated perils on the specified location and/or particular assets.

Content provided by developer.


Who is it for? (NB. Multi-stakeholder)
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: , ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

REDi

Resilience-based Earthquake Design Initiative

The REDi Rating System is developed by Arups Advanced Technology and Research team, it proposes a framework for owners, architects, and engineers to implement ‘resilience-based earthquake design’ to new development. It describes design and planning criteria to enable owners to resume business operations and provide liveable conditions quickly after an earthquake, according to their desired resilience objectives. It also presents a loss evaluation methodology for assessing the success of the adopted design and planning measures in meeting the resilience objectives.

Content provided by developer.


Who is it for? (NB. To provide building owners, architects and engineers a framework for resilience-based earthquake design, specifically related to the new development of a building. The framework is not designed for use on existing structures.)
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage:
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

RELi

The Resilience Action List (RELi) standard

The RELi 2.0 Rating System (RELi 2.0) is a holistic, resilience-based rating system that combines innovative design criteria with the latest in integrative design processes for next-generation neighborhoods, buildings, homes and infrastructure. By selectively bundling existing sustainable and regenerative guidelines with RELi’s ground-breaking credits for emergency preparedness, adaptation, and community vitality, RELi 2.0 is the most comprehensive reference guide and certification available anywhere for socially and environmentally resilient design and construction.

Since 2017, RELi has been managed by the U.S. Green Building Council, Inc. (USGBC) which, in conjunction with Market Transformation to Sustainability, is leading the evolution of RELi 2.0 to synthesize the LEED Resilient Design pilot credits with RELi’s Hazard Mitigation and Adaptation credits. RELi 2.0 certification is based on a point system. The number of points that a project earns determines the certification level it receives.

Content provided by developer.


Who is it for? (NB. Infrastructure owners, designers, community groups, environmental organisations, constructors, regulators, policy makers, etc.)
Phase:
Sector:
Sector specific?Built environment
Type:
Maturity:
Region:
Value Chain Stage:

Developed by

Various

Open Tool

Join the conversation

 Tweet #TRStoolbox
 Share on LinkedIn

Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

RESILENS

Realising European ReSILiencE for Critical INfraStructure

RESILENS will develop a European Resilience Management Guideline (ERMG) to support the practical application of resilience to all CI sectors. Accompanying the ERMG will be a Resilience Management Matrix and Audit Toolkit (ReMMAT) which will enable CI systems (encompassing assets and organisations) to have their level of resilience quantitatively and qualitatively indexed.

Content provided by developer.


Who is it for? (NB. Various e.g. Critical Infrastructure provider and at different spatial scales (urban, regional, national and transboundary))
Phase:,
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: , ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Resilience.io

Resilience.io is designed as a computer-based platform that provides an integrated systems view of a city-region. It will be an analysis and decision-support tool for collaboration and resilience decision-making. The resilience.io platform combines computer representations of resource flows, human and business activities and infrastructure systems. The platform contains a growing library of process models of typical human, industrial and ecological systems, the relevant ones of which are used in a local instance to create a tailored integrated systems model for a city-region.

Content provided by developer.


Who is it for? (NB. Decision makers)
Phase:,
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: , ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

SimCenter

Computational Modeling and Simulation Center

The Computational Modeling and Simulation Center (SimCenter) provides next-generation computational modeling and simulation software tools, user support, and educational materials to the natural hazards engineering research community with the goal of advancing the nation’s capability to simulate the impact of natural hazards on structures, lifelines, and communities. In addition, the Center will enable leaders to make more informed decisions about the need for and effectiveness of potential mitigation strategies.

Content provided by developer.


Who is it for?
Phase:, ,
Sector:
Sector specific?Hazards
Type:
Maturity:
Region:
Value Chain Stage: , ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

Simulating Critical Infrastructures

This simulation software allows you to calculate the cascade effects using various impact indicators, from number of people affected to projected costs. A variety of techniques are used to visualize the scenarios, including standard reports, 2D and 3D interfaces and full-blown virtual reality representations. To create the future you want, this tool helps you see the future you want to avoid.

Content provided by developer.


Who is it for? (NB. Infrastructure operators)
Phase:, ,
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: , ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

SuRe

The Standard for Sustainable and Resilience Infrastructure (SuRe®)

SuRe® – the Standard for Sustainable and Resilient Infrastructure is a third-party-verified, global voluntary standard, which drives the integration of sustainability and resilience aspects into infrastructure development and upgrade by providing guidance for infrastructure project developers, financiers and public-sector institutions. The Standard assesses infrastructure throughout the project life cycle at the design, construction and operational phases. SuRe® consists of 14 themes covering 61 criteria across environmental, social and governance (ESG) factors in addition to two general reporting requirements for impact measurement.

SuRe® can be applied to all types of infrastructure, including critical infrastructure systems and infrastructure services, such as: Water (harvesting, storage, management, distribution, treatment and recycling); Energy (generation, storage and distribution); Solid waste (collection, distribution, processing, recycling and storage); Transport networks, nodes and fleet (pedestrian, bicycle, vehicular, rail, water-borne and air transportation); Communication networks (telephone, cellular and data); Social infrastructure (education, healthcare, sports and recreation, law enforcement, fire and emergency services); Food systems (production, storage, processing and distribution).

SuRe® development followed the ISEAL Alliance Codes of Good Practice for standard setting, and as of October 2018, SuRe® is the first infrastructure standard to be an Associate Member of ISEAL, the global membership association for credible and good practice in sustainability standards. Other members of ISEAL include FSC, Fair Trade, Better Cotton Initiative BCI, SA 8000 and others. The first certifiable version of the SuRe® Standard was released at COP23 2017. Since then, SuRe® has entered into the SuRe® Initial Implementation Phase 2018-2019 whereby projects will be assessed on all SuRe® material criteria and, if compliant, be awarded a SuRe® certification.

GIB has also developed the self-assessment tool based on the SuRe®, called The SmartScan. The SmartScan is an infrastructure self-assessment tool developed on the basis of the SuRe® Standard for Sustainable and Resilient Infrastructure, that provides a rapid assessment of an infrastructure project against sustainability and resilience criteria covering Environmental, Social and Governance (ESG) issues.

SmartScan offers cities and project owners a practical and rapid way to:

  • enhance their awareness about sustainability and resilience-related good practices;
  • prepare projects for the scrutiny of financial services;
  • increase the project attractiveness for potential investment.

The SmartScan has been applied to more than 25 infrastructure projects in the sectors of Water, Energy, Transport networks, Communication technologies installations, in countries such as China, Mexico, India, Philippines, Kosovo and Ecuador, with a total CAPEX of 18 Billions USD

Content provided by developer.


Who is it for? (NB. Project developers, financiers, local authorities)
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

TORC

Training for Operational Resilience Capabilities

The Training for Operational Resilience Capabilities (TORC) approach addresses three distinct training arenas; operational training addresses the exploration of the necessary margin of maneuver in the “compliance vs resilience” space, managerial training addresses the assessment of a reasonable and accountable space of maneuver, while integrated training addresses the active reconciliation of margin and space of maneuver. This facilitates a continual process of updating of rules based on the enhanced knowledge about the professional competence and craftsmanship in the organization at hand.

The TORC approach is designed to be applicable in different contexts; in a normal operation context where pre-existing rules and procedures form the expectations of compliance, in an emergency context in which emergency plans form the presumptions of compliance, and in a “managing the unexpected” context in which the applicable set of rules and procedures must be collected and formed instantly and situation-dependently.

Content provided by developer.


Who is it for?
Phase:,
Sector:
Sector specific?Built Environment
Type:
Maturity:
Region:
Value Chain Stage: ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

World Bank Climate & Disaster Risk Screening Tools

Self-assessment tools provide a systematic, consistent, and transparent way of considering short- and long-term climate and disaster risks in project and national/sector planning processes. The tools target a range of sectors (both national/ policy and project levels): national plans, agricultural, coastal flood protection, energy, health, roads, water, etc.

Content provided by developer.


Who is it for? (NB. Project developers (project level tools available) , public sector (policy level tools available))
Phase:
Sector:
Sector specific?No
Type:
Maturity:
Region:
Value Chain Stage: , ,
Diagnose & ConceiveDesign & DeliverOperate & Maintain
DiagnoseOptionsProcureDesign/PlanFinanceImplementOperateMaintainDispose/Reuse

NB. This is a filtered view. To see the full list of tools click clear filters.


Click here to submit your own links.

Submit a suggestion for our Tools section

Your email address will be treated in accordance with our data protection policy.





 Close form